skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghiorzi, Enrico"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Generalized Algebraic Data Types(GADTs) are a syntactic generalization of the usual algebraic data types (ADTs), such as lists, trees, etc. ADTs’ standard initial algebra semantics (IAS) in the category$$\mathit{Set}$$of sets justify critical syntactic constructs – such as recursion, pattern matching, and fold – for programming with them. In this paper, we show that semantics for GADTs that specialize to the IAS for ADTs are necessarily unsatisfactory. First, we show that the functorial nature of such semantics for GADTs in$$\mathit{Set}$$introducesghostelements, i.e., elements not writable in syntax. Next, we show how such ghost elements break parametricity. We observe that the situation for GADTs contrasts dramatically with that for ADTs, whose IAS coincides with the parametric model constructed via their Church encodings in System F. Our analysis reveals that the fundamental obstacle to giving a functorial IAS for GADTs is the inherently partial nature of their map functions. We show that this obstacle cannot be overcome by replacing$$\mathit{Set}$$with other categories that account for this partiality. 
    more » « less
  2. Deep data types are those that are constructed from other data types, including, possibly, themselves. In this case, they are said to be truly nested. Deep induction is an extension of structural induction that traverses all of the structure in a deep data type, propagating predicates on its primitive data throughout the entire structure. Deep induction can be used to prove properties of nested types, including truly nested types, that cannot be proved via structural induction. In this paper we show how to extend deep induction to GADTs that are not truly nested GADTs. This opens the way to incorporating automatic generation of (deep) induction rules for them into proof assistants. We also show that the techniques developed in this paper do not suffice for extending deep induction to truly nested GADTs, so more sophisticated techniques are needed to derive deep induction rules for them. 
    more » « less
  3. This paper considers parametricity and its consequent free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the level of terms, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate andchallenging. In particular, to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We also prove that our model satisfies an appropriate Abstraction Theorem, as well as that it verifies all standard consequences of parametricity in the presence of primitive nested types. We give several concrete examples illustrating how our model can be used to derive useful free theorems, including a short cut fusion transformation, for programs over nested types. Finally, we consider generalizing our results to GADTs, and argue that no extension of our parametric model for nested types can give a functorial interpretation of GADTs in terms of left Kan extensions and still be parametric. 
    more » « less
  4. GADTs can be represented either as their Church encodings a la Atkey, or as fixpoints a la Johann and Polonsky. While a GADT represented as its Church encoding need not support a map function satisfying the functor laws, the fixpoint representation of a GADT must support such a map function even to be well-defined. The two representations of a GADT thus need not be the same in general. This observation forces a choice of representation of data types in languages supporting GADTs. In this paper we show that choosing whether to represent data types as their Church encodings or as fixpoints determines whether or not a language supporting GADTs can have parametric models. This choice thus has important consequences for how we can program with, and reason about, these advanced data types. 
    more » « less